
Today

Flow review

Augmenting paths

Ford-Fulkerson Algorithm

Intro to cuts (reason: prove correctness)



s = source, t = sink.
c(e) = capacity of edge e
Capacity condition:  0 ≤ f(e) ≤ c(e)
Conservation condition: for v ∈ V – {s, t}: "
                  ∑ f(e) =   ∑ f(e)

Flow Networks
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The value of a flow f is:  v(f) = ∑ f(e)     
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The value of a flow f is:  v(f) = ∑ f(e)     
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Find s-t flow of maximum value.

Maximum Flow Problem
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Towards a Max-Flow 
Algorithm

Key idea: repeatedly choose paths and 
“augment” the amount of flow on those paths 
as much as possible until capacities are met



Towards a Max Flow Algorithm
Problem: possible to get stuck at a flow that is 
not maximum, no more paths with excess capacity
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Residual Graph
Original edge:  e = (u, v)  ∈ E.

Flow f(e), capacity c(e).

Create two residual edges
Forward edge 
e = (u, v) with capacity c(e) - f(e)
Backward/reverse edge 
e’ = (v, u) with capacity f(e)

Residual graph:  Gf = (V, Ef ).
Ef = edges with positive residual capacity
Ef = {e : f(e) < c(e)} ∪ {e’ : f(e) > 0}
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Augmenting Path

Definition: an s-t path P in Gf is an augmenting path

Idea: use an augmenting path to augment flow in G
Increase flow on forward edges
Decrease flow on backward edges

Definition: let bottleneck(P, f) be the minimum residual 
capacity (i.e., capacity in Gf) of any edge in P

Example on board



Augmenting Path

Augment(f, P) {
   b = bottleneck(P, f) 
   foreach e = (u,v) ∈ P {
      if e is a forward edge
             f(e) = f(e) + b
      else
         let e’ = (v, u)
         f(e’) = f(e’) - b
   }
   return f
}

// edge on P with least residual capacity

Use path P in Gf to to update flow f

// forward edge: increase flow

// backward edge: decrease flow



Augmenting Path

Claim: Let f be a flow and let f’ = Augment(f, P). Then 
f’ is a flow.

Proof idea: verify capacity and conservation conditions
1) Capacity: by design of residual graph
2) Conservation: check that net change at each node 
is zero

Proof sketch on board



Ford-Fulkerson Algorithm

Ford-Fulkerson(G, s, t) {
   foreach e ∈ E  f(e) = 0 // initially, no flow
   Gf = copy of G          // residual graph = original graph

   while (there exists an s-t path P in Gf) {
      f = Augment(f, P)    // change the flow
      update Gf                  // build a new residual graph
   }
   return f
}

Repeat: find an augmenting path, and augment!
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max flow = 19
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Termination

Assumption.  All capacities are positive integers.

Invariant.  Every flow value f(e) and every residual 
capacity cf (e) remains an integer throughout the 
algorithm.

Theorem. Let OPT = value of max flow. The algorithm 
terminates in at most OPT iterations, with OPT ≤ C, 
the total capacity of the edges leaving the source.

Proof?



Running Time?

There are at most C augment operations. How 
long does it take for each?

Find a residual path
Compute bottleneck capacity
Update flow
Update residual graph

O(m+n)
O(m)
O(m)
O(m)

Total running time: O(C(m+n))



B

A

An s-t cut is a partition (A, B) of V with s ∈ A and 
t ∈ B.
The capacity of a cut (A, B) is c(A,B) = Σ   c(e)
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BA

Cuts
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B
A

Flow value lemma.  Let f be any flow, and let (A, B) 
be any s-t cut.  Then, the net flow sent across the 
cut is equal to the amount leaving s.

Flows and Cuts
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BA

Flow value lemma.  Let f be any flow, and let (A, B) 
be any s-t cut.  Then, the net flow sent across the 
cut is equal to the amount leaving s.
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B

A

Flow value lemma.  Let f be any flow, and let (A, B) 
be any s-t cut.  Then, the net flow sent across the 
cut is equal to the amount leaving s.
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Flows and Cuts

Flow value lemma.  Let f be any flow, and let (A, B) be 
any s-t cut.  Then ∑ f(e) - ∑ f(e) = v(f).

Proof:

v(f) = ∑ f(e)                     by definition

     = ∑    ( ∑ f(e) - ∑ f(e) )

     = ∑ f(e) - ∑ f(e)

by flow conservation, all terms
except v = s are 0

e out of A e into A

e out of s

e out of vv ∈ A

e out of A e into A

e into v
if both endpoints of e are in A, 
there will be canceling terms 
for that edge



Max-Flow Min-Cut

There is a deep connection between flows 
and cuts in networks

Next time, we will prove that Ford-Fulkerson 
is correct by proving the Max-Flow Min-Cut 
Theorem


