
Today

Flow review

Augmenting paths

Ford-Fulkerson Algorithm

Intro to cuts (reason: prove correctness)

s = source, t = sink.
c(e) = capacity of edge e
Capacity condition: 0 ≤ f(e) ≤ c(e)
Conservation condition: for v ∈ V – {s, t}: "
 ∑ f(e) = ∑ f(e)

Flow Networks

e into v e out of v

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

flow = 4 4

4
4

0

0

0

0

0

0

0

0

0 0

0

The value of a flow f is: v(f) = ∑ f(e)

Flows

e out of s

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

flow = 4 4

4
4

0

0

0

0

0

0

0

0

0 0

0

value = 4

The value of a flow f is: v(f) = ∑ f(e)

Flows

e out of s

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

flow = 10 0

0
9

4

10

9

1

0

6

1

10

0 9

6

value = 24

Find s-t flow of maximum value.

Maximum Flow Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

flow = 10 1

0
10

5

13

9

0

0

8

3

13

0 9

9

value = 28

Towards a Max-Flow
Algorithm

Key idea: repeatedly choose paths and
“augment” the amount of flow on those paths
as much as possible until capacities are met

Towards a Max Flow Algorithm
Problem: possible to get stuck at a flow that is
not maximum, no more paths with excess capacity

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

×

×

×

20

20

20

×20

Residual Graph
Original edge: e = (u, v) ∈ E.

Flow f(e), capacity c(e).

Create two residual edges
Forward edge
e = (u, v) with capacity c(e) - f(e)
Backward/reverse edge
e’ = (v, u) with capacity f(e)

Residual graph: Gf = (V, Ef).
Ef = edges with positive residual capacity
Ef = {e : f(e) < c(e)} ∪ {e’ : f(e) > 0}

u v 17
6

u v 11

residual
capacity

 6

Augmenting Path

Definition: an s-t path P in Gf is an augmenting path

Idea: use an augmenting path to augment flow in G
Increase flow on forward edges
Decrease flow on backward edges

Definition: let bottleneck(P, f) be the minimum residual
capacity (i.e., capacity in Gf) of any edge in P

Example on board

Augmenting Path

Augment(f, P) {
 b = bottleneck(P, f)
 foreach e = (u,v) ∈ P {
 if e is a forward edge
 f(e) = f(e) + b
 else
 let e’ = (v, u)
 f(e’) = f(e’) - b
 }
 return f
}

// edge on P with least residual capacity

Use path P in Gf to to update flow f

// forward edge: increase flow

// backward edge: decrease flow

Augmenting Path

Claim: Let f be a flow and let f’ = Augment(f, P). Then
f’ is a flow.

Proof idea: verify capacity and conservation conditions
1) Capacity: by design of residual graph
2) Conservation: check that net change at each node
is zero

Proof sketch on board

Ford-Fulkerson Algorithm

Ford-Fulkerson(G, s, t) {
 foreach e ∈ E f(e) = 0 // initially, no flow
 Gf = copy of G // residual graph = original graph

 while (there exists an s-t path P in Gf) {
 f = Augment(f, P) // change the flow
 update Gf // build a new residual graph
 }
 return f
}

Repeat: find an augmenting path, and augment!

Example

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
0

0

0

0 0 0

0
0

 G:

Flow value = 0

0

Example

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
0

0

0

0 0 0

0
0

 G

Flow value = 0

0

s

2

3

4

5 t 10 9

 4

 10 6 2

 Gf

 10 8

 10

× ×

×

8 8

8

×
8

Example

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
8

0

0

0 0 8

0
 G

Flow value = 8

0

s

2

3

4

5 t 10

 4

 10 6

 Gf

8

 8

 8

 8

 9

 2 2

 2

×
×

×

10

10
2 × 2

×
10

Example

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

0

0

0 2 10

2
 G

Flow value = 10

0

s

2

3

4

5 t

 4
 Gf

8

 8

 10

 10

 2

 2

 10

 10 6

 7

× ×
×

×

6 8
6

6

×
16

Example

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

0

10

2
 G

Flow value = 16

s

2

3

4

5 t

 Gf

8

 8

 10

 10

 8

 6

 1

6 8

6
6

 6

 6
 4

 2

 4

 4

×8

×
0

× 2

× 8

×
18

Example

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

10

 G

Flow value = 18

s

2

3

4

5 t

 Gf

8

 10

 10

 8

 6

8

6

 8

 8

 2

8

0

2

8

 2

 8

 1

 2

 2

 2

× 9 × 9

× 7

× 3

× 9

×
19

max flow = 19

Example

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

10

 G

s

2

3

4

5 t

 Gf

 10

 10

 9

 6

6

 9

 9

 2

0

 3

 7

 1

 1

 1

9 9

7

3

9

 1

Termination

Assumption. All capacities are positive integers.

Invariant. Every flow value f(e) and every residual
capacity cf (e) remains an integer throughout the
algorithm.

Theorem. Let OPT = value of max flow. The algorithm
terminates in at most OPT iterations, with OPT ≤ C,
the total capacity of the edges leaving the source.

Proof?

Running Time?

There are at most C augment operations. How
long does it take for each?

Find a residual path
Compute bottleneck capacity
Update flow
Update residual graph

O(m+n)
O(m)
O(m)
O(m)

Total running time: O(C(m+n))

B

A

An s-t cut is a partition (A, B) of V with s ∈ A and
t ∈ B.
The capacity of a cut (A, B) is c(A,B) = Σ c(e)

Cuts

e out of A

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

capacity of
cut = 30

BA

Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

capacity of cut = 9 + 15 + 8 + 30 = 62
(Capacity is sum of weights on edges leaving A.)

B
A

Flow value lemma. Let f be any flow, and let (A, B)
be any s-t cut. Then, the net flow sent across the
cut is equal to the amount leaving s.

Flows and Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

10 0

0
9

4

10

9

1

0

6

1

10

0 9

6

value = 24

∑ f(e) - ∑ f(e) = v(f)
e out of a e into a

BA

Flow value lemma. Let f be any flow, and let (A, B)
be any s-t cut. Then, the net flow sent across the
cut is equal to the amount leaving s.

Flows and Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

10 0

0
9

4

10

9

1

0

6

1

10

0 9

6

value = 24

∑ f(e) - ∑ f(e) = v(f)
e out of a e into a

B

A

Flow value lemma. Let f be any flow, and let (A, B)
be any s-t cut. Then, the net flow sent across the
cut is equal to the amount leaving s.

Flows and Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

10 0

0
9

4

10

9

1

0

6

1

10

0 9

6

value = 24

∑ f(e) - ∑ f(e) = v(f)
e out of a e into a

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be
any s-t cut. Then ∑ f(e) - ∑ f(e) = v(f).

Proof:

v(f) = ∑ f(e) by definition

 = ∑ (∑ f(e) - ∑ f(e))

 = ∑ f(e) - ∑ f(e)

by flow conservation, all terms
except v = s are 0

e out of A e into A

e out of s

e out of vv ∈ A

e out of A e into A

e into v
if both endpoints of e are in A,
there will be canceling terms
for that edge

Max-Flow Min-Cut

There is a deep connection between flows
and cuts in networks

Next time, we will prove that Ford-Fulkerson
is correct by proving the Max-Flow Min-Cut
Theorem

