Today

- Flow review
- Augmenting paths
- Ford-Fulkerson Algorithm
- Intro to cuts (reason: prove correctness)

Flow Networks

- s = source, t = sink.
- c(e) = capacity of edge e
- \odot Capacity condition: $0 \le f(e) \le c(e)$
- © Conservation condition: for $v \in V \{s, t\}$:

$$\sum f(e) = \sum f(e)$$
e into v e out of v

Flows

The value of a flow f is: $v(f) = \sum_{e \text{ out of s}} f(e)$

Flows

The value of a flow f is: $v(f) = \sum_{e \text{ out of s}} f(e)$

Maximum Flow Problem

Find s-t flow of maximum value.

Towards a Max-Flow Algorithm

Key idea: repeatedly choose paths and "augment" the amount of flow on those paths as much as possible until capacities are met

Towards a Max Flow Algorithm

Problem: possible to get stuck at a flow that is not maximum, no more paths with excess capacity

Residual Graph

- \odot Original edge: $e = (u, v) \in E$.
 - Flow f(e), capacity c(e).

- Create two residual edges
 - Forward edge

 e = (u, v) with capacity c(e) f(e)
 - Backward/reverse edge
 e' = (v, u) with capacity f(e)

- \odot Residual graph: $G_f = (V, E_f)$.
 - E_f = edges with positive residual capacity
 - \bullet E_f = {e : f(e) < c(e)} \cup {e' : f(e) > 0}

Augmenting Path

- Definition: an s-t path P in Gf is an augmenting path
- Idea: use an augmenting path to augment flow in G
 - Increase flow on forward edges
 - Decrease flow on backward edges
- \odot Definition: let bottleneck(P, f) be the minimum residual capacity (i.e., capacity in G_f) of any edge in P

Example on board

Augmenting Path

Use path P in Gf to to update flow f

Augmenting Path

Claim: Let f be a flow and let f' = Augment(f, P). Then f' is a flow.

Proof idea: verify capacity and conservation conditions

- 1) Capacity: by design of residual graph
- 2) Conservation: check that net change at each node is zero

Proof sketch on board

Ford-Fulkerson Algorithm

Repeat: find an augmenting path, and augment!

Flow value = 0

Termination

- Assumption. All capacities are positive integers.
- Invariant. Every flow value f(e) and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.
- Theorem. Let OPT = value of max flow. The algorithm terminates in at most OPT iterations, with OPT ≤ C, the total capacity of the edges leaving the source.
- Proof?

Running Time?

There are at most C augment operations. How long does it take for each?

Find a residual path
O(m+n)

© Compute bottleneck capacity
O(m)

Update flow
O(m)

Update residual graph
O(m)

Total running time: O(C(m+n))

Cuts

- An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ B.
- The capacity of a cut (A, B) is $c(A,B) = \sum_{e \text{ out of } A} c(e)$

Cuts

capacity of cut = 9 + 15 + 8 + 30 = 62(Capacity is sum of weights on edges leaving A.)

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } a} f(e) - \sum_{e \text{ into } a} f(e) = v(f)$$

value = 24

A

10 10

4 15

15 10

sources

4 5 8

6 10

15 15

10

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } a} f(e) - \sum_{e \text{ into } a} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } a} f(e) - \sum_{e \text{ into } a} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then $\sum_{e \text{ out of } A} f(e) = v(f)$.

Proof:

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

$$= \sum_{v \in A} (\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ into } v} f(e))$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

by definition

by flow conservation, all terms except v = s are 0 if both endpoints of e are in A, there will be canceling terms for that edge

Max-Flow Min-Cut

- There is a deep connection between flows and cuts in networks
- Next time, we will prove that Ford-Fulkerson is correct by proving the Max-Flow Min-Cut Theorem