Today

@ Flow review
@ Augmenting paths
@ Ford-Fulkerson Algorithm

@ Intro to cuts (reason: prove correctness)

Flow Networks

@ s = source, t = sink.

@ c(e) = capacity of edge e

@ Capacity condition: 0 < f(e) < c(e)

@ Conservation condition: for v e V - {s, t}:
> fle) = 2 f(e)

e into v e out of v

Flows

@ The value of a flow fis: v(f) = 3 f(e)

e out of s

Flows

@ The value of a flow fis: v(f) = 3 f(e)

e out of s

Maximum Flow Problem

Find s-t flow of maximum value.

Towards a Max-Flow
Algorithm

Key idea: repeatedly choose paths and
"augment” the amount of flow on those paths
as much as possible until capacities are met

Towards a Max Flow Algorithm

@ Problem: possible to get stuck at a flow that is
not maximum, no more paths with excess capacity

Residual Graph

@ Original edge: e = (u, v) € E.
@ Flow f(e), capacity c(e).

@ Create two residual edges
@ Forward edge nesaa!
e = (u, v) with capacity c(e) - f(e) Vi
@ Backward/reverse edge
e’ = (v, u) with capacity f(e)

@ Residual graph: G¢ = (V, E;).
@ E; = edges with positive residual capacity
@ E. ={e: fle) <cle)} u {e: fle) > O}

Augmenting Path

@ Definition: an s-t path P in Gfis an augmenting path

@ Idea: use an augmenting path to augment flow in G
@ Increase flow on forward edges
@ Decrease flow on backward edges

@ Definition: let bottleneck(P, f) be the minimum residual
capacity (i.e., capacity in G¢) of any edge in P

Example on board

Augmenting Path

Use path P in G¢ fo fo update flow f

Augment (£, P) {
b = bottleneck (P, £f) // edge on P with least residual capacity
foreach e = (u,v) € P {
if e 1is a forward edge
f(e) = f(e) + b // forward edge: increase flow
else
let e’ = (v, u)
f(e’') = f(e’') - b // backward edge: decrease flow
}

return £

Augmenting Path

Claim: Let f be a flow and let f’ = Augment(f, P). Then
f' is a flow.

Proof idea: verify capacity and conservation conditions
1) Capacity: by design of residual graph

2) Conservation: check that net change at each node
IS zero

Proof sketch on board

Ford-Fulkerson Algorithm

Repeat: find an augmenting path, and augment!

Ford-Fulkerson (G, s, t) {
foreach e € E f(e) = 0 // initially, no flow
G = copy of G // residual graph = original graph

while (there exists an s-t path P in Gg¢) ({

f = Augment(f, P) // change the flow

update G; // build a new residual graph
}

return £

Termination

@ Assumption. All capacities are positive integers.

@ Invariant. Every flow value f(e) and every residual
capacity c¢ (e) remains an integer throughout the

algorithm.

® Theorem. Let OPT = value of max flow. The algorithm
terminates in at most OPT iterations, with OPT < C,
the total capacity of the edges leaving the source.

@ Proof?

Running Time?

@ There are at most C augment operations. How
long does it take for each?

@ Find a residual path O(m+n)
@ Compute bottleneck capacity O(m)
@ Update flow O(m)
@ Update residual graph O(m)

Total running time: O(C(m+n))

Cuts

@ An s-t cut is a par’rl’rlon (A, B) oF % wu’rh S € A and .
t € B. '
@ The capacity of a cu’r (A, B) is c(A B) => c(e)

eou of A

1o 4
v
capacity of =

cut = 30

Cuts

capacity of cut =9 + 15 + 8 +30= 62
(Capacity is sum of weights on edges leaving A.)

Flows and Cuts

Flow value lemma. Let f be any ﬂow and let (A, B)
be any s-t cut. Then, the net flow sen’r across the
cut is equal to the amount leaving s. : '

3 fle) - 3 fle) = wm“'

e out of a e into a

value = 24

Flows and Cuts

Flow value lemma. Let f be any ﬂo'w' and let (A, B)
be any s-t cut. Then, the net flow sen’r across the
cut is equal to the amount leaving s. ' '

> fle) - > fle) = v(F)

e out of a e into a

Flows and Cuts

Flow value lemma. Let f be any ﬂow and let (A, B)
be any s-t cut. Then, the net flow sen’r across ’rhe
cut is equal to the amount leaving s. '

3 fle) - 3 fle) = wm“'

e out of a e into a

value = 24

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be
any s-t cut. Then 2 f(e) - 2 f(e) = v(f).

e out of A e into A

Proof:
v(f) = 2 F(e) by definition
e out of
by flow conservation, all terms
= fle) - 2 f(e '
ng e(ouZ oF(v) e %’rov()) except v =s are O
=3 fle) - > f(e) if both endpoints of e are in A,
eout of A einto A there will be canceling terms

for that edge

Max-Flow Min-Cut

@ There is a deep connection between flows
and cuts in networks

@ Next time, we will prove that Ford-Fulkerson
Is correct by proving the Max-Flow Min-Cut
Theorem

